Deep Reinforcement Learning Hands-On

Download or Read eBook Deep Reinforcement Learning Hands-On PDF written by Maxim Lapan and published by Packt Publishing Ltd. This book was released on 2024-11-12 with total page 717 pages. Available in PDF, EPUB and Kindle.
Deep Reinforcement Learning Hands-On
Author :
Publisher : Packt Publishing Ltd
Total Pages : 717
Release :
ISBN-10 : 9781835882719
ISBN-13 : 1835882714
Rating : 4/5 (19 Downloads)

Book Synopsis Deep Reinforcement Learning Hands-On by : Maxim Lapan

Book excerpt: Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environments and tasks to modern, state-of-the-art methods Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn with concise explanations, modern libraries, and diverse applications from games to stock trading and web navigation Develop deep RL models, improve their stability, and efficiently solve complex environments New content on RL from human feedback (RLHF), MuZero, and transformers Book Description Start your journey into reinforcement learning (RL) and reward yourself with the third edition of Deep Reinforcement Learning Hands-On. This book takes you through the basics of RL to more advanced concepts with the help of various applications, including game playing, discrete optimization, stock trading, and web browser navigation. By walking you through landmark research papers in the fi eld, this deep RL book will equip you with practical knowledge of RL and the theoretical foundation to understand and implement most modern RL papers. The book retains its approach of providing concise and easy-to-follow explanations from the previous editions. You'll work through practical and diverse examples, from grid environments and games to stock trading and RL agents in web environments, to give you a well-rounded understanding of RL, its capabilities, and its use cases. You'll learn about key topics, such as deep Q-networks (DQNs), policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. If you want to learn about RL through a practical approach using OpenAI Gym and PyTorch, concise explanations, and the incremental development of topics, then Deep Reinforcement Learning Hands-On, Third Edition, is your ideal companion What you will learn Stay on the cutting edge with new content on MuZero, RL with human feedback, and LLMs Evaluate RL methods, including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, and D4PG Implement RL algorithms using PyTorch and modern RL libraries Build and train deep Q-networks to solve complex tasks in Atari environments Speed up RL models using algorithmic and engineering approaches Leverage advanced techniques like proximal policy optimization (PPO) for more stable training Who this book is for This book is ideal for machine learning engineers, software engineers, and data scientists looking to learn and apply deep reinforcement learning in practice. It assumes familiarity with Python, calculus, and machine learning concepts. With practical examples and high-level overviews, it’s also suitable for experienced professionals looking to deepen their understanding of advanced deep RL methods and apply them across industries, such as gaming and finance


Deep Reinforcement Learning Hands-On Related Books

Deep Reinforcement Learning Hands-On
Language: en
Pages: 717
Authors: Maxim Lapan
Categories: Computers
Type: BOOK - Published: 2024-11-12 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environment
Deep Reinforcement Learning Hands-On
Language: en
Pages: 827
Authors: Maxim Lapan
Categories: Computers
Type: BOOK - Published: 2020-01-31 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Revised and expanded to include multi-agent methods, discrete optimization, RL in robotics, advanced exploration techniques, and more Key Features Second editio
Deep Reinforcement Learning in Action
Language: en
Pages: 381
Authors: Alexander Zai
Categories: Computers
Type: BOOK - Published: 2020-04-28 - Publisher: Manning

DOWNLOAD EBOOK

Summary Humans learn best from feedback—we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences
Hands-On Reinforcement Learning with Python
Language: en
Pages: 309
Authors: Sudharsan Ravichandiran
Categories: Computers
Type: BOOK - Published: 2018-06-28 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial
Hands-On Reinforcement Learning for Games
Language: en
Pages: 420
Authors: Micheal Lanham
Categories: Computers
Type: BOOK - Published: 2020-01-03 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow Key FeaturesGet to