Deep Reinforcement Learning Hands-On

Download or Read eBook Deep Reinforcement Learning Hands-On PDF written by Maxim Lapan and published by Packt Publishing Ltd. This book was released on 2018-06-21 with total page 547 pages. Available in PDF, EPUB and Kindle.
Deep Reinforcement Learning Hands-On
Author :
Publisher : Packt Publishing Ltd
Total Pages : 547
Release :
ISBN-10 : 9781788839303
ISBN-13 : 1788839307
Rating : 4/5 (03 Downloads)

Book Synopsis Deep Reinforcement Learning Hands-On by : Maxim Lapan

Book excerpt: This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems. Key Features Explore deep reinforcement learning (RL), from the first principles to the latest algorithms Evaluate high-profile RL methods, including value iteration, deep Q-networks, policy gradients, TRPO, PPO, DDPG, D4PG, evolution strategies and genetic algorithms Keep up with the very latest industry developments, including AI-driven chatbots Book Description Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google’s use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace. Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on ‘grid world’ environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots. What you will learn Understand the DL context of RL and implement complex DL models Learn the foundation of RL: Markov decision processes Evaluate RL methods including Cross-entropy, DQN, Actor-Critic, TRPO, PPO, DDPG, D4PG and others Discover how to deal with discrete and continuous action spaces in various environments Defeat Atari arcade games using the value iteration method Create your own OpenAI Gym environment to train a stock trading agent Teach your agent to play Connect4 using AlphaGo Zero Explore the very latest deep RL research on topics including AI-driven chatbots Who this book is for Some fluency in Python is assumed. Basic deep learning (DL) approaches should be familiar to readers and some practical experience in DL will be helpful. This book is an introduction to deep reinforcement learning (RL) and requires no background in RL.


Deep Reinforcement Learning Hands-On Related Books

Deep Reinforcement Learning Hands-On
Language: en
Pages: 547
Authors: Maxim Lapan
Categories: Computers
Type: BOOK - Published: 2018-06-21 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems. Key Features Explore deep reinforcement learning (R
Deep Reinforcement Learning Hands-On
Language: en
Pages: 717
Authors: Maxim Lapan
Categories: Computers
Type: BOOK - Published: 2024-11-12 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environment
Deep Reinforcement Learning Hands-On
Language: en
Pages: 827
Authors: Maxim Lapan
Categories: Computers
Type: BOOK - Published: 2020-01-31 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Revised and expanded to include multi-agent methods, discrete optimization, RL in robotics, advanced exploration techniques, and more Key Features Second editio
Deep Reinforcement Learning in Action
Language: en
Pages: 381
Authors: Alexander Zai
Categories: Computers
Type: BOOK - Published: 2020-04-28 - Publisher: Manning

DOWNLOAD EBOOK

Summary Humans learn best from feedback—we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences
Hands-On Reinforcement Learning with Python
Language: en
Pages: 309
Authors: Sudharsan Ravichandiran
Categories: Computers
Type: BOOK - Published: 2018-06-28 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial